This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1ass23l.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1ass23l.t | ⊢ × = ( .r ‘ 𝑃 ) | ||
| ply1ass23l.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| ply1ass23l.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| ply1ass23l.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| Assertion | ply1ass23l | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ass23l.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1ass23l.t | ⊢ × = ( .r ‘ 𝑃 ) | |
| 3 | ply1ass23l.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | ply1ass23l.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 5 | ply1ass23l.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 6 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 7 | 1on | ⊢ 1o ∈ On | |
| 8 | 7 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 1o ∈ On ) |
| 9 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) | |
| 10 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 11 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 12 | 1 11 2 | ply1mulr | ⊢ × = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 13 | 11 6 12 | mplmulr | ⊢ × = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 14 | eqid | ⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) | |
| 15 | eqid | ⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) | |
| 16 | 11 6 15 14 | mplbasss | ⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) ⊆ ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
| 17 | 1 3 | ply1bascl2 | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 18 | 16 17 | sselid | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 21 | 1 3 | ply1bascl2 | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 | 16 21 | sselid | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 25 | 1 11 5 | ply1vsca | ⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
| 26 | 11 6 25 | mplvsca2 | ⊢ · = ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) |
| 27 | simpr1 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐾 ) | |
| 28 | 6 8 9 10 13 14 20 24 4 26 27 | psrass23l | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |