This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1ass23l.p | |- P = ( Poly1 ` R ) |
|
| ply1ass23l.t | |- .X. = ( .r ` P ) |
||
| ply1ass23l.b | |- B = ( Base ` P ) |
||
| ply1ass23l.k | |- K = ( Base ` R ) |
||
| ply1ass23l.n | |- .x. = ( .s ` P ) |
||
| Assertion | ply1ass23l | |- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ass23l.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1ass23l.t | |- .X. = ( .r ` P ) |
|
| 3 | ply1ass23l.b | |- B = ( Base ` P ) |
|
| 4 | ply1ass23l.k | |- K = ( Base ` R ) |
|
| 5 | ply1ass23l.n | |- .x. = ( .s ` P ) |
|
| 6 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 7 | 1on | |- 1o e. On |
|
| 8 | 7 | a1i | |- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> 1o e. On ) |
| 9 | simpl | |- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> R e. Ring ) |
|
| 10 | eqid | |- { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } |
|
| 11 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 12 | 1 11 2 | ply1mulr | |- .X. = ( .r ` ( 1o mPoly R ) ) |
| 13 | 11 6 12 | mplmulr | |- .X. = ( .r ` ( 1o mPwSer R ) ) |
| 14 | eqid | |- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
|
| 15 | eqid | |- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
|
| 16 | 11 6 15 14 | mplbasss | |- ( Base ` ( 1o mPoly R ) ) C_ ( Base ` ( 1o mPwSer R ) ) |
| 17 | 1 3 | ply1bascl2 | |- ( X e. B -> X e. ( Base ` ( 1o mPoly R ) ) ) |
| 18 | 16 17 | sselid | |- ( X e. B -> X e. ( Base ` ( 1o mPwSer R ) ) ) |
| 19 | 18 | 3ad2ant2 | |- ( ( A e. K /\ X e. B /\ Y e. B ) -> X e. ( Base ` ( 1o mPwSer R ) ) ) |
| 20 | 19 | adantl | |- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> X e. ( Base ` ( 1o mPwSer R ) ) ) |
| 21 | 1 3 | ply1bascl2 | |- ( Y e. B -> Y e. ( Base ` ( 1o mPoly R ) ) ) |
| 22 | 16 21 | sselid | |- ( Y e. B -> Y e. ( Base ` ( 1o mPwSer R ) ) ) |
| 23 | 22 | 3ad2ant3 | |- ( ( A e. K /\ X e. B /\ Y e. B ) -> Y e. ( Base ` ( 1o mPwSer R ) ) ) |
| 24 | 23 | adantl | |- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> Y e. ( Base ` ( 1o mPwSer R ) ) ) |
| 25 | 1 11 5 | ply1vsca | |- .x. = ( .s ` ( 1o mPoly R ) ) |
| 26 | 11 6 25 | mplvsca2 | |- .x. = ( .s ` ( 1o mPwSer R ) ) |
| 27 | simpr1 | |- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> A e. K ) |
|
| 28 | 6 8 9 10 13 14 20 24 4 26 27 | psrass23l | |- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) ) |