This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltnlt.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pltnlt.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pltnlt | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 < 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltnlt.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pltnlt.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 4 | 1 3 2 | pltnle | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 ( le ‘ 𝐾 ) 𝑋 ) |
| 5 | 3 2 | pltle | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 < 𝑋 → 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 6 | 5 | 3com23 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 < 𝑋 → 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 < 𝑋 → 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) |
| 8 | 4 7 | mtod | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 < 𝑋 ) |