This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate expression for the "less than" relation. ( dfpss3 analog.) (Contributed by NM, 4-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | |- B = ( Base ` K ) |
|
| pleval2.l | |- .<_ = ( le ` K ) |
||
| pleval2.s | |- .< = ( lt ` K ) |
||
| Assertion | pltval3 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ -. Y .<_ X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | |- B = ( Base ` K ) |
|
| 2 | pleval2.l | |- .<_ = ( le ` K ) |
|
| 3 | pleval2.s | |- .< = ( lt ` K ) |
|
| 4 | 2 3 | pltval | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 5 | 1 2 | posref | |- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
| 6 | 5 | 3adant3 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> X .<_ X ) |
| 7 | breq1 | |- ( X = Y -> ( X .<_ X <-> Y .<_ X ) ) |
|
| 8 | 6 7 | syl5ibcom | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X = Y -> Y .<_ X ) ) |
| 9 | 8 | adantr | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( X = Y -> Y .<_ X ) ) |
| 10 | 1 2 | posasymb | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) |
| 11 | 10 | biimpd | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) ) |
| 12 | 11 | expdimp | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( Y .<_ X -> X = Y ) ) |
| 13 | 9 12 | impbid | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( X = Y <-> Y .<_ X ) ) |
| 14 | 13 | necon3abid | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( X =/= Y <-> -. Y .<_ X ) ) |
| 15 | 14 | pm5.32da | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ X =/= Y ) <-> ( X .<_ Y /\ -. Y .<_ X ) ) ) |
| 16 | 4 15 | bitrd | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ -. Y .<_ X ) ) ) |