This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | pjoml3i | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 | 3 4 | pjoml2i | ⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ 𝐵 ) ) |
| 6 | 2 1 | chsscon3i | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 7 | eqcom | ⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = 𝐵 ↔ 𝐵 = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) | |
| 8 | 3 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
| 9 | 8 4 | chincli | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 10 | 1 9 | chdmj2i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 11 | 3 2 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 12 | 11 | ineq2i | ⊢ ( 𝐴 ∩ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 13 | 10 12 | eqtri | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 14 | 13 | eqeq1i | ⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = 𝐵 ) |
| 15 | 3 9 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 16 | 2 15 | chcon2i | ⊢ ( 𝐵 = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ 𝐵 ) ) |
| 17 | 7 14 16 | 3bitr3i | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = 𝐵 ↔ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ 𝐵 ) ) |
| 18 | 5 6 17 | 3imtr4i | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = 𝐵 ) |