This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. Derived using projections; compare omlsi . (Contributed by NM, 6-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | pjomli | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1 2 | omlsi | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) → 𝐴 = 𝐵 ) |