This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. Definition in Kalmbach p. 22. (Contributed by NM, 31-Oct-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | pjoml2i | |- ( A C_ B -> ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | inss2 | |- ( ( _|_ ` A ) i^i B ) C_ B |
|
| 4 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 5 | 4 2 | chincli | |- ( ( _|_ ` A ) i^i B ) e. CH |
| 6 | 1 5 2 | chlubii | |- ( ( A C_ B /\ ( ( _|_ ` A ) i^i B ) C_ B ) -> ( A vH ( ( _|_ ` A ) i^i B ) ) C_ B ) |
| 7 | 3 6 | mpan2 | |- ( A C_ B -> ( A vH ( ( _|_ ` A ) i^i B ) ) C_ B ) |
| 8 | 1 5 | chdmj1i | |- ( _|_ ` ( A vH ( ( _|_ ` A ) i^i B ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) |
| 9 | 8 | ineq2i | |- ( B i^i ( _|_ ` ( A vH ( ( _|_ ` A ) i^i B ) ) ) ) = ( B i^i ( ( _|_ ` A ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) ) |
| 10 | incom | |- ( B i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i B ) |
|
| 11 | 10 | ineq1i | |- ( ( B i^i ( _|_ ` A ) ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) = ( ( ( _|_ ` A ) i^i B ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) |
| 12 | inass | |- ( ( B i^i ( _|_ ` A ) ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) = ( B i^i ( ( _|_ ` A ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) ) |
|
| 13 | 5 | chocini | |- ( ( ( _|_ ` A ) i^i B ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) = 0H |
| 14 | 11 12 13 | 3eqtr3i | |- ( B i^i ( ( _|_ ` A ) i^i ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) ) = 0H |
| 15 | 9 14 | eqtri | |- ( B i^i ( _|_ ` ( A vH ( ( _|_ ` A ) i^i B ) ) ) ) = 0H |
| 16 | 1 5 | chjcli | |- ( A vH ( ( _|_ ` A ) i^i B ) ) e. CH |
| 17 | 2 | chshii | |- B e. SH |
| 18 | 16 17 | pjomli | |- ( ( ( A vH ( ( _|_ ` A ) i^i B ) ) C_ B /\ ( B i^i ( _|_ ` ( A vH ( ( _|_ ` A ) i^i B ) ) ) ) = 0H ) -> ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) |
| 19 | 7 15 18 | sylancl | |- ( A C_ B -> ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) |