This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. Derived using projections; compare omlsi . (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoml | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ) ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) | |
| 3 | 2 | ineq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ↔ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
| 5 | 1 4 | anbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) ) |
| 6 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 = 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 𝐵 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) → 𝐴 = 𝐵 ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) → if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 𝐵 ) ) ) |
| 8 | sseq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ) ) | |
| 9 | ineq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) → ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = ( if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) → ( ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ↔ ( if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∧ ( if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) ) |
| 12 | eqeq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ) ) | |
| 13 | 11 12 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) → ( ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) → if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = 𝐵 ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∧ ( if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) → if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ) ) ) |
| 14 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 15 | 14 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 16 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 17 | 16 | elimel | ⊢ if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∈ Sℋ |
| 18 | 15 17 | pjomli | ⊢ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊆ if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∧ ( if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) → if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) = if ( 𝐵 ∈ Sℋ , 𝐵 , 0ℋ ) ) |
| 19 | 7 13 18 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) → 𝐴 = 𝐵 ) ) |
| 20 | 19 | imp | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) ) → 𝐴 = 𝐵 ) |