This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. Derived using projections; compare omlsi . (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoml | |- ( ( ( A e. CH /\ B e. SH ) /\ ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A C_ B <-> if ( A e. CH , A , 0H ) C_ B ) ) |
|
| 2 | fveq2 | |- ( A = if ( A e. CH , A , 0H ) -> ( _|_ ` A ) = ( _|_ ` if ( A e. CH , A , 0H ) ) ) |
|
| 3 | 2 | ineq2d | |- ( A = if ( A e. CH , A , 0H ) -> ( B i^i ( _|_ ` A ) ) = ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) ) |
| 4 | 3 | eqeq1d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( B i^i ( _|_ ` A ) ) = 0H <-> ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) ) |
| 5 | 1 4 | anbi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) <-> ( if ( A e. CH , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) ) ) |
| 6 | eqeq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A = B <-> if ( A e. CH , A , 0H ) = B ) ) |
|
| 7 | 5 6 | imbi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) -> A = B ) <-> ( ( if ( A e. CH , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) -> if ( A e. CH , A , 0H ) = B ) ) ) |
| 8 | sseq2 | |- ( B = if ( B e. SH , B , 0H ) -> ( if ( A e. CH , A , 0H ) C_ B <-> if ( A e. CH , A , 0H ) C_ if ( B e. SH , B , 0H ) ) ) |
|
| 9 | ineq1 | |- ( B = if ( B e. SH , B , 0H ) -> ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = ( if ( B e. SH , B , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) ) |
|
| 10 | 9 | eqeq1d | |- ( B = if ( B e. SH , B , 0H ) -> ( ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H <-> ( if ( B e. SH , B , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) ) |
| 11 | 8 10 | anbi12d | |- ( B = if ( B e. SH , B , 0H ) -> ( ( if ( A e. CH , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) <-> ( if ( A e. CH , A , 0H ) C_ if ( B e. SH , B , 0H ) /\ ( if ( B e. SH , B , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) ) ) |
| 12 | eqeq2 | |- ( B = if ( B e. SH , B , 0H ) -> ( if ( A e. CH , A , 0H ) = B <-> if ( A e. CH , A , 0H ) = if ( B e. SH , B , 0H ) ) ) |
|
| 13 | 11 12 | imbi12d | |- ( B = if ( B e. SH , B , 0H ) -> ( ( ( if ( A e. CH , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) -> if ( A e. CH , A , 0H ) = B ) <-> ( ( if ( A e. CH , A , 0H ) C_ if ( B e. SH , B , 0H ) /\ ( if ( B e. SH , B , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) -> if ( A e. CH , A , 0H ) = if ( B e. SH , B , 0H ) ) ) ) |
| 14 | h0elch | |- 0H e. CH |
|
| 15 | 14 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 16 | h0elsh | |- 0H e. SH |
|
| 17 | 16 | elimel | |- if ( B e. SH , B , 0H ) e. SH |
| 18 | 15 17 | pjomli | |- ( ( if ( A e. CH , A , 0H ) C_ if ( B e. SH , B , 0H ) /\ ( if ( B e. SH , B , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) -> if ( A e. CH , A , 0H ) = if ( B e. SH , B , 0H ) ) |
| 19 | 7 13 18 | dedth2h | |- ( ( A e. CH /\ B e. SH ) -> ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) -> A = B ) ) |
| 20 | 19 | imp | |- ( ( ( A e. CH /\ B e. SH ) /\ ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) ) -> A = B ) |