This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjop.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjop.2 | ⊢ 𝐴 ∈ ℋ | ||
| Assertion | pjoc1i | ⊢ ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjop.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjop.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | 1 2 | pjopi | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 4 | 1 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 5 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 6 | shsubcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) → ( 𝐴 −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ) | |
| 7 | 4 5 6 | mp3an13 | ⊢ ( 𝐴 ∈ 𝐻 → ( 𝐴 −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ) |
| 8 | 3 7 | eqeltrid | ⊢ ( 𝐴 ∈ 𝐻 → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐻 ) |
| 9 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 10 | 9 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 11 | 8 10 | jctir | ⊢ ( 𝐴 ∈ 𝐻 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 12 | elin | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝐴 ∈ 𝐻 → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 14 | ocin | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) | |
| 15 | 4 14 | ax-mp | ⊢ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ |
| 16 | 13 15 | eleqtrdi | ⊢ ( 𝐴 ∈ 𝐻 → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 0ℋ ) |
| 17 | elch0 | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 0ℋ ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) | |
| 18 | 16 17 | sylib | ⊢ ( 𝐴 ∈ 𝐻 → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
| 19 | 1 2 | pjpji | ⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 20 | oveq2 | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) ) | |
| 21 | 19 20 | eqtrid | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) ) |
| 22 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 23 | ax-hvaddid | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) |
| 25 | 21 24 | eqtrdi | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ → 𝐴 = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 26 | 25 5 | eqeltrdi | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ → 𝐴 ∈ 𝐻 ) |
| 27 | 18 26 | impbii | ⊢ ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |