This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjop.1 | |- H e. CH |
|
| pjop.2 | |- A e. ~H |
||
| Assertion | pjoc1i | |- ( A e. H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjop.1 | |- H e. CH |
|
| 2 | pjop.2 | |- A e. ~H |
|
| 3 | 1 2 | pjopi | |- ( ( projh ` ( _|_ ` H ) ) ` A ) = ( A -h ( ( projh ` H ) ` A ) ) |
| 4 | 1 | chshii | |- H e. SH |
| 5 | 1 2 | pjclii | |- ( ( projh ` H ) ` A ) e. H |
| 6 | shsubcl | |- ( ( H e. SH /\ A e. H /\ ( ( projh ` H ) ` A ) e. H ) -> ( A -h ( ( projh ` H ) ` A ) ) e. H ) |
|
| 7 | 4 5 6 | mp3an13 | |- ( A e. H -> ( A -h ( ( projh ` H ) ` A ) ) e. H ) |
| 8 | 3 7 | eqeltrid | |- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. H ) |
| 9 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 10 | 9 2 | pjclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 11 | 8 10 | jctir | |- ( A e. H -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) ) |
| 12 | elin | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( H i^i ( _|_ ` H ) ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) ) |
|
| 13 | 11 12 | sylibr | |- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( H i^i ( _|_ ` H ) ) ) |
| 14 | ocin | |- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
|
| 15 | 4 14 | ax-mp | |- ( H i^i ( _|_ ` H ) ) = 0H |
| 16 | 13 15 | eleqtrdi | |- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. 0H ) |
| 17 | elch0 | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. 0H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
|
| 18 | 16 17 | sylib | |- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
| 19 | 1 2 | pjpji | |- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 20 | oveq2 | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
|
| 21 | 19 20 | eqtrid | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
| 22 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 23 | ax-hvaddid | |- ( ( ( projh ` H ) ` A ) e. ~H -> ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) ) |
|
| 24 | 22 23 | ax-mp | |- ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) |
| 25 | 21 24 | eqtrdi | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A = ( ( projh ` H ) ` A ) ) |
| 26 | 25 5 | eqeltrdi | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A e. H ) |
| 27 | 18 26 | impbii | |- ( A e. H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |