This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of identity projection. Remark in Beran p. 111. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjch1 | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ ℋ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ ) ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 3 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ↔ ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 5 | 1 4 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 6 | helch | ⊢ ℋ ∈ Cℋ | |
| 7 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 8 | 6 7 | pjchi | ⊢ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
| 9 | 5 8 | dedth | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) ) |
| 10 | 9 | ibi | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) |