This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Component of a projection. (Contributed by NM, 31-Oct-1999) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | pjcompi | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | cheli | ⊢ ( 𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ ) |
| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 4 | 3 | cheli | ⊢ ( 𝐵 ∈ ( ⊥ ‘ 𝐻 ) → 𝐵 ∈ ℋ ) |
| 5 | hvaddcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) | |
| 6 | 2 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
| 7 | axpjpj | ⊢ ( ( 𝐻 ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) | |
| 8 | 1 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) |
| 9 | eqid | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) | |
| 10 | axpjcl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ) | |
| 11 | 1 6 10 | sylancr | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ) |
| 12 | axpjcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 13 | 3 6 12 | sylancr | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 14 | simpl | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐴 ∈ 𝐻 ) | |
| 15 | simpr | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 16 | 1 | chocunii | ⊢ ( ( ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ∧ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
| 17 | 11 13 14 15 16 | syl22anc | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ∧ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
| 18 | 9 17 | mpan2i | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
| 19 | 8 18 | mpd | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) |
| 20 | 19 | simpld | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ) |