This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of (scalar) product is product of projection. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjmul.3 | ⊢ 𝐶 ∈ ℂ | ||
| Assertion | pjmulii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐶 ·ℎ 𝐴 ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjmul.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | 1 2 | pjpji | ⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 5 | 4 | oveq2i | ⊢ ( 𝐶 ·ℎ 𝐴 ) = ( 𝐶 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 6 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 7 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 8 | 7 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 9 | 3 6 8 | hvdistr1i | ⊢ ( 𝐶 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) = ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 10 | 5 9 | eqtri | ⊢ ( 𝐶 ·ℎ 𝐴 ) = ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 11 | 10 | fveq2i | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐶 ·ℎ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) |
| 12 | 1 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 13 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 14 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐶 ∈ ℂ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) → ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ) | |
| 15 | 12 3 13 14 | mp3an | ⊢ ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 |
| 16 | 7 | chshii | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
| 17 | 7 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 18 | shmulcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ 𝐶 ∈ ℂ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 19 | 16 3 17 18 | mp3an | ⊢ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) |
| 20 | 1 | pjcompi | ⊢ ( ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ∧ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 21 | 15 19 20 | mp2an | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 22 | 11 21 | eqtri | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐶 ·ℎ 𝐴 ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |