This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of (scalar) product is product of projection. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjmul.3 | |- C e. CC |
||
| Assertion | pjmulii | |- ( ( projh ` H ) ` ( C .h A ) ) = ( C .h ( ( projh ` H ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjmul.3 | |- C e. CC |
|
| 4 | 1 2 | pjpji | |- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 5 | 4 | oveq2i | |- ( C .h A ) = ( C .h ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 6 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 7 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 8 | 7 2 | pjhclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
| 9 | 3 6 8 | hvdistr1i | |- ( C .h ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 10 | 5 9 | eqtri | |- ( C .h A ) = ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 11 | 10 | fveq2i | |- ( ( projh ` H ) ` ( C .h A ) ) = ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) |
| 12 | 1 | chshii | |- H e. SH |
| 13 | 1 2 | pjclii | |- ( ( projh ` H ) ` A ) e. H |
| 14 | shmulcl | |- ( ( H e. SH /\ C e. CC /\ ( ( projh ` H ) ` A ) e. H ) -> ( C .h ( ( projh ` H ) ` A ) ) e. H ) |
|
| 15 | 12 3 13 14 | mp3an | |- ( C .h ( ( projh ` H ) ` A ) ) e. H |
| 16 | 7 | chshii | |- ( _|_ ` H ) e. SH |
| 17 | 7 2 | pjclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 18 | shmulcl | |- ( ( ( _|_ ` H ) e. SH /\ C e. CC /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) -> ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) ) |
|
| 19 | 16 3 17 18 | mp3an | |- ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) |
| 20 | 1 | pjcompi | |- ( ( ( C .h ( ( projh ` H ) ` A ) ) e. H /\ ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) = ( C .h ( ( projh ` H ) ` A ) ) ) |
| 21 | 15 19 20 | mp2an | |- ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) = ( C .h ( ( projh ` H ) ` A ) ) |
| 22 | 11 21 | eqtri | |- ( ( projh ` H ) ` ( C .h A ) ) = ( C .h ( ( projh ` H ) ` A ) ) |