This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvdistr1.1 | ⊢ 𝐴 ∈ ℂ | |
| hvdistr1.2 | ⊢ 𝐵 ∈ ℋ | ||
| hvdistr1.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | hvdistr1i | ⊢ ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvdistr1.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | hvdistr1.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hvdistr1.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | ax-hvdistr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | mp3an | ⊢ ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) |