This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjadj.3 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | pjadjii | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjadj.3 | ⊢ 𝐵 ∈ ℋ | |
| 4 | 3 2 | pjorthi | ⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) |
| 5 | 1 4 | ax-mp | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 |
| 6 | 5 | fveq2i | ⊢ ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) = ( ∗ ‘ 0 ) |
| 7 | cj0 | ⊢ ( ∗ ‘ 0 ) = 0 | |
| 8 | 6 7 | eqtri | ⊢ ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) = 0 |
| 9 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 10 | 9 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 11 | 1 3 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ |
| 12 | 10 11 | his1i | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 13 | 2 3 | pjorthi | ⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) |
| 14 | 1 13 | ax-mp | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 |
| 15 | 8 12 14 | 3eqtr4ri | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 16 | 15 | oveq2i | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 17 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 18 | 9 3 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ℋ |
| 19 | his7 | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) | |
| 20 | 17 11 18 19 | mp3an | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 21 | ax-his2 | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) ) | |
| 22 | 17 10 11 21 | mp3an | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 23 | 16 20 22 | 3eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 24 | 1 3 | pjpji | ⊢ 𝐵 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) |
| 25 | 24 | oveq2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 26 | 1 2 | pjpji | ⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 27 | 26 | oveq1i | ⊢ ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 28 | 23 25 27 | 3eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |