This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of vector sum is sum of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjadj.3 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | pjaddii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjadj.3 | ⊢ 𝐵 ∈ ℋ | |
| 4 | 1 2 | pjpji | ⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 5 | 1 3 | pjpji | ⊢ 𝐵 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) |
| 6 | 4 5 | oveq12i | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 7 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 8 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 9 | 8 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 10 | 1 3 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ |
| 11 | 8 3 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ℋ |
| 12 | 7 9 10 11 | hvadd4i | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 13 | 6 12 | eqtri | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 14 | 13 | fveq2i | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) |
| 15 | 1 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 16 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 17 | 1 3 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ 𝐻 |
| 18 | shaddcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ 𝐻 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ∈ 𝐻 ) | |
| 19 | 15 16 17 18 | mp3an | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ∈ 𝐻 |
| 20 | 8 | chshii | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
| 21 | 8 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 22 | 8 3 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 23 | shaddcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 24 | 20 21 22 23 | mp3an | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) |
| 25 | 1 | pjcompi | ⊢ ( ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ∈ 𝐻 ∧ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 26 | 19 24 25 | mp2an | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 27 | 14 26 | eqtri | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |