This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjadj.3 | |- B e. ~H |
||
| Assertion | pjadjii | |- ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjadj.3 | |- B e. ~H |
|
| 4 | 3 2 | pjorthi | |- ( H e. CH -> ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 ) |
| 5 | 1 4 | ax-mp | |- ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 |
| 6 | 5 | fveq2i | |- ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = ( * ` 0 ) |
| 7 | cj0 | |- ( * ` 0 ) = 0 |
|
| 8 | 6 7 | eqtri | |- ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = 0 |
| 9 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 10 | 9 2 | pjhclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
| 11 | 1 3 | pjhclii | |- ( ( projh ` H ) ` B ) e. ~H |
| 12 | 10 11 | his1i | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) = ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 13 | 2 3 | pjorthi | |- ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) |
| 14 | 1 13 | ax-mp | |- ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 |
| 15 | 8 12 14 | 3eqtr4ri | |- ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) |
| 16 | 15 | oveq2i | |- ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) |
| 17 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 18 | 9 3 | pjhclii | |- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H |
| 19 | his7 | |- ( ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` H ) ` B ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) |
|
| 20 | 17 11 18 19 | mp3an | |- ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 21 | ax-his2 | |- ( ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` B ) e. ~H ) -> ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) ) |
|
| 22 | 17 10 11 21 | mp3an | |- ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) |
| 23 | 16 20 22 | 3eqtr4i | |- ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) |
| 24 | 1 3 | pjpji | |- B = ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) |
| 25 | 24 | oveq2i | |- ( ( ( projh ` H ) ` A ) .ih B ) = ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 26 | 1 2 | pjpji | |- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 27 | 26 | oveq1i | |- ( A .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) |
| 28 | 23 25 27 | 3eqtr4i | |- ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) |