This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection components on orthocomplemented subspaces are orthogonal. (Contributed by NM, 26-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjorth.1 | ⊢ 𝐴 ∈ ℋ | |
| pjorth.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | pjorthi | ⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjorth.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | pjorth.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | chsh | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 4 | axpjcl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) | |
| 5 | 1 4 | mpan2 | ⊢ ( 𝐻 ∈ Cℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) |
| 6 | choccl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) | |
| 7 | axpjcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 8 | 6 2 7 | sylancl | ⊢ ( 𝐻 ∈ Cℋ → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 9 | 5 8 | jca | ⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 10 | shocorth | ⊢ ( 𝐻 ∈ Sℋ → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) ) | |
| 11 | 3 9 10 | sylc | ⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) |