This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lvecpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lvecpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lvecpropd.4 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) | ||
| lvecpropd.5 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | ||
| lvecpropd.6 | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | ||
| lvecpropd.7 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | lvecpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ LVec ↔ 𝐿 ∈ LVec ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lvecpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | lvecpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | lvecpropd.4 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) | |
| 5 | lvecpropd.5 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | |
| 6 | lvecpropd.6 | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | |
| 7 | lvecpropd.7 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 8 | 1 2 3 4 5 6 7 | lmodpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝐿 ∈ LMod ) ) |
| 9 | 4 5 | eqtr3d | ⊢ ( 𝜑 → ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐿 ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝜑 → ( ( Scalar ‘ 𝐾 ) ∈ DivRing ↔ ( Scalar ‘ 𝐿 ) ∈ DivRing ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ LMod ∧ ( Scalar ‘ 𝐾 ) ∈ DivRing ) ↔ ( 𝐿 ∈ LMod ∧ ( Scalar ‘ 𝐿 ) ∈ DivRing ) ) ) |
| 12 | eqid | ⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) | |
| 13 | 12 | islvec | ⊢ ( 𝐾 ∈ LVec ↔ ( 𝐾 ∈ LMod ∧ ( Scalar ‘ 𝐾 ) ∈ DivRing ) ) |
| 14 | eqid | ⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) | |
| 15 | 14 | islvec | ⊢ ( 𝐿 ∈ LVec ↔ ( 𝐿 ∈ LMod ∧ ( Scalar ‘ 𝐿 ) ∈ DivRing ) ) |
| 16 | 11 13 15 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ LVec ↔ 𝐿 ∈ LVec ) ) |