This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019) (Revised by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pgrpsubgsymgbi.g | |- G = ( SymGrp ` A ) |
|
| pgrpsubgsymgbi.b | |- B = ( Base ` G ) |
||
| pgrpsubgsymg.c | |- F = ( Base ` P ) |
||
| Assertion | pgrpsubgsymg | |- ( A e. V -> ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> F e. ( SubGrp ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | |- G = ( SymGrp ` A ) |
|
| 2 | pgrpsubgsymgbi.b | |- B = ( Base ` G ) |
|
| 3 | pgrpsubgsymg.c | |- F = ( Base ` P ) |
|
| 4 | 1 | symggrp | |- ( A e. V -> G e. Grp ) |
| 5 | simp1 | |- ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> P e. Grp ) |
|
| 6 | 4 5 | anim12i | |- ( ( A e. V /\ ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) ) -> ( G e. Grp /\ P e. Grp ) ) |
| 7 | simp2 | |- ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> F C_ B ) |
|
| 8 | simp3 | |- ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) |
|
| 9 | 1 2 | symgbasmap | |- ( f e. B -> f e. ( A ^m A ) ) |
| 10 | 9 | ssriv | |- B C_ ( A ^m A ) |
| 11 | sstr | |- ( ( F C_ B /\ B C_ ( A ^m A ) ) -> F C_ ( A ^m A ) ) |
|
| 12 | 10 11 | mpan2 | |- ( F C_ B -> F C_ ( A ^m A ) ) |
| 13 | resmpo | |- ( ( F C_ ( A ^m A ) /\ F C_ ( A ^m A ) ) -> ( ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |` ( F X. F ) ) = ( f e. F , g e. F |-> ( f o. g ) ) ) |
|
| 14 | 13 | anidms | |- ( F C_ ( A ^m A ) -> ( ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |` ( F X. F ) ) = ( f e. F , g e. F |-> ( f o. g ) ) ) |
| 15 | 12 14 | syl | |- ( F C_ B -> ( ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |` ( F X. F ) ) = ( f e. F , g e. F |-> ( f o. g ) ) ) |
| 16 | eqid | |- ( A ^m A ) = ( A ^m A ) |
|
| 17 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 18 | 1 16 17 | symgplusg | |- ( +g ` G ) = ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |
| 19 | 18 | eqcomi | |- ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) = ( +g ` G ) |
| 20 | 19 | reseq1i | |- ( ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |` ( F X. F ) ) = ( ( +g ` G ) |` ( F X. F ) ) |
| 21 | 15 20 | eqtr3di | |- ( F C_ B -> ( f e. F , g e. F |-> ( f o. g ) ) = ( ( +g ` G ) |` ( F X. F ) ) ) |
| 22 | 21 | 3ad2ant2 | |- ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( f e. F , g e. F |-> ( f o. g ) ) = ( ( +g ` G ) |` ( F X. F ) ) ) |
| 23 | 8 22 | eqtrd | |- ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( +g ` P ) = ( ( +g ` G ) |` ( F X. F ) ) ) |
| 24 | 7 23 | jca | |- ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( F C_ B /\ ( +g ` P ) = ( ( +g ` G ) |` ( F X. F ) ) ) ) |
| 25 | 24 | adantl | |- ( ( A e. V /\ ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) ) -> ( F C_ B /\ ( +g ` P ) = ( ( +g ` G ) |` ( F X. F ) ) ) ) |
| 26 | 2 3 | grpissubg | |- ( ( G e. Grp /\ P e. Grp ) -> ( ( F C_ B /\ ( +g ` P ) = ( ( +g ` G ) |` ( F X. F ) ) ) -> F e. ( SubGrp ` G ) ) ) |
| 27 | 6 25 26 | sylc | |- ( ( A e. V /\ ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) ) -> F e. ( SubGrp ` G ) ) |
| 28 | 27 | ex | |- ( A e. V -> ( ( P e. Grp /\ F C_ B /\ ( +g ` P ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> F e. ( SubGrp ` G ) ) ) |