This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol in a word truncated by one symbol. (Contributed by AV, 16-Jun-2018) (Revised by AV, 5-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxtrcfvl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( lastS ‘ ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 2 ∈ ℤ ) |
| 3 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 4 | 3 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 6 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 7 | eluz2 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 8 | 2 5 6 7 | syl3anbrc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 9 | ige2m1fz1 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 11 | pfxfvlsw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) ) ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( lastS ‘ ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) ) ) |
| 13 | 3 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 14 | sub1m1 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 2 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 2 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 2 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |
| 18 | 12 17 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( lastS ‘ ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |