This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partition-Equivalence Theorem with general R , with binary relations. This theorem (together with pet and pet2 ) is the main result of my investigation into set theory, cf. the comment of pet . (Contributed by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pets | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Parts 𝐴 ↔ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Ers 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet | ⊢ ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ErALTV 𝐴 ) | |
| 2 | xrncnvepresex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ V ) | |
| 3 | brpartspart | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ V ) → ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Parts 𝐴 ↔ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Part 𝐴 ) ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Parts 𝐴 ↔ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Part 𝐴 ) ) |
| 5 | 1cossxrncnvepresex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ V ) | |
| 6 | brerser | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ V ) → ( ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Ers 𝐴 ↔ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ErALTV 𝐴 ) ) | |
| 7 | 5 6 | syldan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Ers 𝐴 ↔ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ErALTV 𝐴 ) ) |
| 8 | 4 7 | bibi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Parts 𝐴 ↔ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Ers 𝐴 ) ↔ ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ErALTV 𝐴 ) ) ) |
| 9 | 1 8 | mpbiri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Parts 𝐴 ↔ ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) Ers 𝐴 ) ) |