This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the pet span ( R |X. (`' _E |`A ) ) partitions A , then every block u e. A is of the form [ v ] for some v that not only lies in the domain but also has at least one internal element c and at least one R -target b (cf. also the comments of qseq ). It makes explicit that pet gives active representatives for each block, without ever forcing v = u . (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmqsblocks | ⊢ ( ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 → ∀ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq | ⊢ ( ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ↔ ∀ 𝑢 ( 𝑢 ∈ 𝐴 ↔ ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ) | |
| 2 | eqab2 | ⊢ ( ∀ 𝑢 ( 𝑢 ∈ 𝐴 ↔ ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) → ∀ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 → ∀ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) |
| 4 | rexanid | ⊢ ( ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) | |
| 5 | eldmxrncnvepres2 | ⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝑣 ∈ 𝐴 ∧ ∃ 𝑐 𝑐 ∈ 𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ) ) | |
| 6 | 5 | elv | ⊢ ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝑣 ∈ 𝐴 ∧ ∃ 𝑐 𝑐 ∈ 𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ) |
| 7 | 3simpc | ⊢ ( ( 𝑣 ∈ 𝐴 ∧ ∃ 𝑐 𝑐 ∈ 𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) → ( ∃ 𝑐 𝑐 ∈ 𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ) | |
| 8 | 6 7 | sylbi | ⊢ ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → ( ∃ 𝑐 𝑐 ∈ 𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ) |
| 9 | exdistrv | ⊢ ( ∃ 𝑐 ∃ 𝑏 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ↔ ( ∃ 𝑐 𝑐 ∈ 𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ) | |
| 10 | excom | ⊢ ( ∃ 𝑐 ∃ 𝑏 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ↔ ∃ 𝑏 ∃ 𝑐 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) | |
| 11 | 9 10 | bitr3i | ⊢ ( ( ∃ 𝑐 𝑐 ∈ 𝑣 ∧ ∃ 𝑏 𝑣 𝑅 𝑏 ) ↔ ∃ 𝑏 ∃ 𝑐 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| 12 | 8 11 | sylib | ⊢ ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → ∃ 𝑏 ∃ 𝑐 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| 13 | 12 | anim1ci | ⊢ ( ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) → ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ∃ 𝑏 ∃ 𝑐 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) ) |
| 14 | 3anass | ⊢ ( ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ↔ ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) ) | |
| 15 | 14 | 2exbii | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ↔ ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) ) |
| 16 | 19.42vv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) ↔ ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ∃ 𝑏 ∃ 𝑐 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) ) | |
| 17 | 15 16 | sylbbr | ⊢ ( ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ∃ 𝑏 ∃ 𝑐 ( 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) → ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| 18 | 13 17 | syl | ⊢ ( ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) → ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| 19 | 18 | reximi | ⊢ ( ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ( 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) → ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| 20 | 4 19 | sylbir | ⊢ ( ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| 21 | 20 | ralimi | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → ∀ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |
| 22 | 3 21 | syl | ⊢ ( ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 → ∀ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∃ 𝑏 ∃ 𝑐 ( 𝑢 = [ 𝑣 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣 𝑅 𝑏 ) ) |