This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partition-Equivalence Theorem with general R , with binary relations. This theorem (together with pet and pet2 ) is the main result of my investigation into set theory, cf. the comment of pet . (Contributed by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pets | |- ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet | |- ( ( R |X. ( `' _E |` A ) ) Part A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) |
|
| 2 | xrncnvepresex | |- ( ( A e. V /\ R e. W ) -> ( R |X. ( `' _E |` A ) ) e. _V ) |
|
| 3 | brpartspart | |- ( ( A e. V /\ ( R |X. ( `' _E |` A ) ) e. _V ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ( R |X. ( `' _E |` A ) ) Part A ) ) |
|
| 4 | 2 3 | syldan | |- ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ( R |X. ( `' _E |` A ) ) Part A ) ) |
| 5 | 1cossxrncnvepresex | |- ( ( A e. V /\ R e. W ) -> ,~ ( R |X. ( `' _E |` A ) ) e. _V ) |
|
| 6 | brerser | |- ( ( A e. V /\ ,~ ( R |X. ( `' _E |` A ) ) e. _V ) -> ( ,~ ( R |X. ( `' _E |` A ) ) Ers A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) ) |
|
| 7 | 5 6 | syldan | |- ( ( A e. V /\ R e. W ) -> ( ,~ ( R |X. ( `' _E |` A ) ) Ers A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) ) |
| 8 | 4 7 | bibi12d | |- ( ( A e. V /\ R e. W ) -> ( ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) <-> ( ( R |X. ( `' _E |` A ) ) Part A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) ) ) |
| 9 | 1 8 | mpbiri | |- ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) ) |