This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partition-Equivalence Theorem, with general R . This theorem (together with pet and pets ) is the main result of my investigation into set theory, see the comment of pet . (Contributed by Peter Mazsa, 24-May-2021) (Revised by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pet2 | ⊢ ( ( Disj ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj5 | ⊢ ( ( EqvRel ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) → Disj ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) | |
| 2 | 1 | petlem | ⊢ ( ( Disj ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ) |