This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary partition and the partition predicate are the same if A and R are sets. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brpartspart | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjsdisj | ⊢ ( 𝑅 ∈ 𝑊 → ( 𝑅 ∈ Disjs ↔ Disj 𝑅 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 ∈ Disjs ↔ Disj 𝑅 ) ) |
| 3 | brdmqssqs | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ) ) |
| 5 | brparts | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) ) |
| 7 | df-part | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ) ) |
| 9 | 4 6 8 | 3bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴 ) ) |