This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcxnn0cl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pc0 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) | |
| 2 | pnf0xnn0 | ⊢ +∞ ∈ ℕ0* | |
| 3 | 1 2 | eqeltrdi | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ∈ ℕ0* ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt 0 ) ∈ ℕ0* ) |
| 5 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ↔ ( 𝑃 pCnt 0 ) ∈ ℕ0* ) ) |
| 7 | 4 6 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) ) |
| 8 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) | |
| 9 | 8 | nn0xnn0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) |
| 10 | 9 | expr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) ) |
| 11 | 7 10 | pm2.61dne | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) |