This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcrec | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = - ( 𝑃 pCnt 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | zq | ⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) | |
| 3 | 1 2 | ax-mp | ⊢ 1 ∈ ℚ |
| 4 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 5 | 3 4 | pm3.2i | ⊢ ( 1 ∈ ℚ ∧ 1 ≠ 0 ) |
| 6 | pcqdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 1 ∈ ℚ ∧ 1 ≠ 0 ) ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt 𝐴 ) ) ) | |
| 7 | 5 6 | mp3an2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt 𝐴 ) ) ) |
| 8 | pc1 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 1 ) = 0 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt 𝐴 ) ) = ( 0 − ( 𝑃 pCnt 𝐴 ) ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = ( 0 − ( 𝑃 pCnt 𝐴 ) ) ) |
| 12 | df-neg | ⊢ - ( 𝑃 pCnt 𝐴 ) = ( 0 − ( 𝑃 pCnt 𝐴 ) ) | |
| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = - ( 𝑃 pCnt 𝐴 ) ) |