This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | |- A = ( Atoms ` K ) |
|
| paddass.p | |- .+ = ( +P ` K ) |
||
| Assertion | padd4N | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( ( X .+ Z ) .+ ( Y .+ W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | |- A = ( Atoms ` K ) |
|
| 2 | paddass.p | |- .+ = ( +P ` K ) |
|
| 3 | simp1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> K e. HL ) |
|
| 4 | simp2r | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> Y C_ A ) |
|
| 5 | simp3l | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> Z C_ A ) |
|
| 6 | simp3r | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> W C_ A ) |
|
| 7 | 1 2 | padd12N | |- ( ( K e. HL /\ ( Y C_ A /\ Z C_ A /\ W C_ A ) ) -> ( Y .+ ( Z .+ W ) ) = ( Z .+ ( Y .+ W ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( Y .+ ( Z .+ W ) ) = ( Z .+ ( Y .+ W ) ) ) |
| 9 | 8 | oveq2d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( X .+ ( Y .+ ( Z .+ W ) ) ) = ( X .+ ( Z .+ ( Y .+ W ) ) ) ) |
| 10 | simp2l | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> X C_ A ) |
|
| 11 | 1 2 | paddssat | |- ( ( K e. HL /\ Z C_ A /\ W C_ A ) -> ( Z .+ W ) C_ A ) |
| 12 | 3 5 6 11 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( Z .+ W ) C_ A ) |
| 13 | 1 2 | paddass | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ ( Z .+ W ) C_ A ) ) -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( X .+ ( Y .+ ( Z .+ W ) ) ) ) |
| 14 | 3 10 4 12 13 | syl13anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( X .+ ( Y .+ ( Z .+ W ) ) ) ) |
| 15 | 1 2 | paddssat | |- ( ( K e. HL /\ Y C_ A /\ W C_ A ) -> ( Y .+ W ) C_ A ) |
| 16 | 3 4 6 15 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( Y .+ W ) C_ A ) |
| 17 | 1 2 | paddass | |- ( ( K e. HL /\ ( X C_ A /\ Z C_ A /\ ( Y .+ W ) C_ A ) ) -> ( ( X .+ Z ) .+ ( Y .+ W ) ) = ( X .+ ( Z .+ ( Y .+ W ) ) ) ) |
| 18 | 3 10 5 16 17 | syl13anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( ( X .+ Z ) .+ ( Y .+ W ) ) = ( X .+ ( Z .+ ( Y .+ W ) ) ) ) |
| 19 | 9 14 18 | 3eqtr4d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A ) /\ ( Z C_ A /\ W C_ A ) ) -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( ( X .+ Z ) .+ ( Y .+ W ) ) ) |