This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | |- A = ( Atoms ` K ) |
|
| paddass.p | |- .+ = ( +P ` K ) |
||
| Assertion | padd12N | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) = ( Y .+ ( X .+ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | |- A = ( Atoms ` K ) |
|
| 2 | paddass.p | |- .+ = ( +P ` K ) |
|
| 3 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 4 | 3 | adantr | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. Lat ) |
| 5 | simpr1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ A ) |
|
| 6 | simpr2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
|
| 7 | 1 2 | paddcom | |- ( ( K e. Lat /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 8 | 4 5 6 7 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 9 | 8 | oveq1d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( Y .+ X ) .+ Z ) ) |
| 10 | 1 2 | paddass | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| 11 | simpl | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. HL ) |
|
| 12 | simpr3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
|
| 13 | 1 2 | paddass | |- ( ( K e. HL /\ ( Y C_ A /\ X C_ A /\ Z C_ A ) ) -> ( ( Y .+ X ) .+ Z ) = ( Y .+ ( X .+ Z ) ) ) |
| 14 | 11 6 5 12 13 | syl13anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y .+ X ) .+ Z ) = ( Y .+ ( X .+ Z ) ) ) |
| 15 | 9 10 14 | 3eqtr3d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) = ( Y .+ ( X .+ Z ) ) ) |