This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the outer Lebesgue measure for subsets of the reals. Here f is a function from the positive integers to pairs <. a , b >. with a <_ b , and the outer volume of the set x is the infimum over all such functions such that the union of the open intervals ( a , b ) covers x of the sum of b - a . (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ovol | ⊢ vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | covol | ⊢ vol* | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cr | ⊢ ℝ | |
| 3 | 2 | cpw | ⊢ 𝒫 ℝ |
| 4 | vy | ⊢ 𝑦 | |
| 5 | cxr | ⊢ ℝ* | |
| 6 | vf | ⊢ 𝑓 | |
| 7 | cle | ⊢ ≤ | |
| 8 | 2 2 | cxp | ⊢ ( ℝ × ℝ ) |
| 9 | 7 8 | cin | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 10 | cmap | ⊢ ↑m | |
| 11 | cn | ⊢ ℕ | |
| 12 | 9 11 10 | co | ⊢ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) |
| 13 | 1 | cv | ⊢ 𝑥 |
| 14 | cioo | ⊢ (,) | |
| 15 | 6 | cv | ⊢ 𝑓 |
| 16 | 14 15 | ccom | ⊢ ( (,) ∘ 𝑓 ) |
| 17 | 16 | crn | ⊢ ran ( (,) ∘ 𝑓 ) |
| 18 | 17 | cuni | ⊢ ∪ ran ( (,) ∘ 𝑓 ) |
| 19 | 13 18 | wss | ⊢ 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
| 20 | 4 | cv | ⊢ 𝑦 |
| 21 | c1 | ⊢ 1 | |
| 22 | caddc | ⊢ + | |
| 23 | cabs | ⊢ abs | |
| 24 | cmin | ⊢ − | |
| 25 | 23 24 | ccom | ⊢ ( abs ∘ − ) |
| 26 | 25 15 | ccom | ⊢ ( ( abs ∘ − ) ∘ 𝑓 ) |
| 27 | 22 26 21 | cseq | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 28 | 27 | crn | ⊢ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 29 | clt | ⊢ < | |
| 30 | 28 5 29 | csup | ⊢ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) |
| 31 | 20 30 | wceq | ⊢ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) |
| 32 | 19 31 | wa | ⊢ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 33 | 32 6 12 | wrex | ⊢ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 34 | 33 4 5 | crab | ⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
| 35 | 34 5 29 | cinf | ⊢ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) |
| 36 | 1 3 35 | cmpt | ⊢ ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 37 | 0 36 | wceq | ⊢ vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |