This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovolval.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| Assertion | ovolval | |- ( A C_ RR -> ( vol* ` A ) = inf ( M , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolval.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 2 | reex | |- RR e. _V |
|
| 3 | 2 | elpw2 | |- ( A e. ~P RR <-> A C_ RR ) |
| 4 | cleq1lem | |- ( x = A -> ( ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
|
| 5 | 4 | rexbidv | |- ( x = A -> ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 6 | 5 | rabbidv | |- ( x = A -> { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) |
| 7 | 6 1 | eqtr4di | |- ( x = A -> { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = M ) |
| 8 | 7 | infeq1d | |- ( x = A -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) = inf ( M , RR* , < ) ) |
| 9 | df-ovol | |- vol* = ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
|
| 10 | xrltso | |- < Or RR* |
|
| 11 | 10 | infex | |- inf ( M , RR* , < ) e. _V |
| 12 | 8 9 11 | fvmpt | |- ( A e. ~P RR -> ( vol* ` A ) = inf ( M , RR* , < ) ) |
| 13 | 3 12 | sylbir | |- ( A C_ RR -> ( vol* ` A ) = inf ( M , RR* , < ) ) |