This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolshft.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ovolshft.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| ovolshft.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) | ||
| ovolshft.4 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | ||
| Assertion | ovolshftlem2 | ⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ovolshft.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | ovolshft.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) | |
| 4 | ovolshft.4 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 5 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐴 ⊆ ℝ ) |
| 6 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐶 ∈ ℝ ) |
| 7 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) |
| 8 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) | |
| 9 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) ) |
| 11 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) ) |
| 13 | 10 12 | opeq12d | ⊢ ( 𝑚 = 𝑛 → 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) 〉 = 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) 〉 ) |
| 14 | 13 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) 〉 ) |
| 15 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 16 | elovolmlem | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 18 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) | |
| 19 | 5 6 7 4 8 14 17 18 | ovolshftlem1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ 𝑀 ) |
| 20 | eleq1a | ⊢ ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ 𝑀 → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) → 𝑧 ∈ 𝑀 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) → 𝑧 ∈ 𝑀 ) ) |
| 22 | 21 | expimpd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) |
| 23 | 22 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) |
| 25 | rabss | ⊢ ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 ↔ ∀ 𝑧 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 ) |