This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set M is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elovolm.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| Assertion | ovolmge0 | ⊢ ( 𝐵 ∈ 𝑀 → 0 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovolm.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 2 | 1 | elovolm | ⊢ ( 𝐵 ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 3 | elovolmlem | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 4 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 ) | |
| 5 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 6 | 4 5 | ovolsf | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 7 | 1nn | ⊢ 1 ∈ ℕ | |
| 8 | ffvelcdm | ⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ 1 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
| 10 | elrege0 | ⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ↔ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ℝ ∧ 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ) ) | |
| 11 | 10 | simprbi | ⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ) |
| 13 | 6 | frnd | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ( 0 [,) +∞ ) ) |
| 14 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 15 | 13 14 | sstrdi | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) |
| 16 | 6 | ffnd | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ℕ ) |
| 17 | fnfvelrn | ⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) | |
| 18 | 16 7 17 | sylancl | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
| 19 | supxrub | ⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) | |
| 20 | 15 18 19 | syl2anc | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 21 | 0xr | ⊢ 0 ∈ ℝ* | |
| 22 | 14 9 | sselid | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ℝ* ) |
| 23 | supxrcl | ⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 24 | 15 23 | syl | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 25 | xrletr | ⊢ ( ( 0 ∈ ℝ* ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) → ( ( 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) | |
| 26 | 21 22 24 25 | mp3an2i | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 27 | 12 20 26 | mp2and | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 28 | 3 27 | sylbi | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 29 | breq2 | ⊢ ( 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 0 ≤ 𝐵 ↔ 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) | |
| 30 | 28 29 | syl5ibrcom | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → 0 ≤ 𝐵 ) ) |
| 31 | 30 | adantld | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ 𝐵 ) ) |
| 32 | 31 | rexlimiv | ⊢ ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ 𝐵 ) |
| 33 | 2 32 | sylbi | ⊢ ( 𝐵 ∈ 𝑀 → 0 ≤ 𝐵 ) |