This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpt3rab1.o | |- O = ( x e. _V , y e. _V |-> ( z e. M |-> { a e. N | ph } ) ) |
|
| ovmpt3rab1.m | |- ( ( x = X /\ y = Y ) -> M = K ) |
||
| ovmpt3rab1.n | |- ( ( x = X /\ y = Y ) -> N = L ) |
||
| ovmpt3rab1.p | |- ( ( x = X /\ y = Y ) -> ( ph <-> ps ) ) |
||
| ovmpt3rab1.x | |- F/ x ps |
||
| ovmpt3rab1.y | |- F/ y ps |
||
| Assertion | ovmpt3rab1 | |- ( ( X e. V /\ Y e. W /\ K e. U ) -> ( X O Y ) = ( z e. K |-> { a e. L | ps } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt3rab1.o | |- O = ( x e. _V , y e. _V |-> ( z e. M |-> { a e. N | ph } ) ) |
|
| 2 | ovmpt3rab1.m | |- ( ( x = X /\ y = Y ) -> M = K ) |
|
| 3 | ovmpt3rab1.n | |- ( ( x = X /\ y = Y ) -> N = L ) |
|
| 4 | ovmpt3rab1.p | |- ( ( x = X /\ y = Y ) -> ( ph <-> ps ) ) |
|
| 5 | ovmpt3rab1.x | |- F/ x ps |
|
| 6 | ovmpt3rab1.y | |- F/ y ps |
|
| 7 | 1 | a1i | |- ( ( X e. V /\ Y e. W /\ K e. U ) -> O = ( x e. _V , y e. _V |-> ( z e. M |-> { a e. N | ph } ) ) ) |
| 8 | 3 4 | rabeqbidv | |- ( ( x = X /\ y = Y ) -> { a e. N | ph } = { a e. L | ps } ) |
| 9 | 2 8 | mpteq12dv | |- ( ( x = X /\ y = Y ) -> ( z e. M |-> { a e. N | ph } ) = ( z e. K |-> { a e. L | ps } ) ) |
| 10 | 9 | adantl | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ ( x = X /\ y = Y ) ) -> ( z e. M |-> { a e. N | ph } ) = ( z e. K |-> { a e. L | ps } ) ) |
| 11 | eqidd | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ x = X ) -> _V = _V ) |
|
| 12 | elex | |- ( X e. V -> X e. _V ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( X e. V /\ Y e. W /\ K e. U ) -> X e. _V ) |
| 14 | elex | |- ( Y e. W -> Y e. _V ) |
|
| 15 | 14 | 3ad2ant2 | |- ( ( X e. V /\ Y e. W /\ K e. U ) -> Y e. _V ) |
| 16 | mptexg | |- ( K e. U -> ( z e. K |-> { a e. L | ps } ) e. _V ) |
|
| 17 | 16 | 3ad2ant3 | |- ( ( X e. V /\ Y e. W /\ K e. U ) -> ( z e. K |-> { a e. L | ps } ) e. _V ) |
| 18 | nfv | |- F/ x ( X e. V /\ Y e. W /\ K e. U ) |
|
| 19 | nfv | |- F/ y ( X e. V /\ Y e. W /\ K e. U ) |
|
| 20 | nfcv | |- F/_ y X |
|
| 21 | nfcv | |- F/_ x Y |
|
| 22 | nfcv | |- F/_ x K |
|
| 23 | nfcv | |- F/_ x L |
|
| 24 | 5 23 | nfrabw | |- F/_ x { a e. L | ps } |
| 25 | 22 24 | nfmpt | |- F/_ x ( z e. K |-> { a e. L | ps } ) |
| 26 | nfcv | |- F/_ y K |
|
| 27 | nfcv | |- F/_ y L |
|
| 28 | 6 27 | nfrabw | |- F/_ y { a e. L | ps } |
| 29 | 26 28 | nfmpt | |- F/_ y ( z e. K |-> { a e. L | ps } ) |
| 30 | 7 10 11 13 15 17 18 19 20 21 25 29 | ovmpodxf | |- ( ( X e. V /\ Y e. W /\ K e. U ) -> ( X O Y ) = ( z e. K |-> { a e. L | ps } ) ) |