This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovmpos.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| Assertion | ovmpos | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ 𝑉 ) → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpos.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 2 | elex | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ V ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 6 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 | |
| 7 | 6 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V |
| 8 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 9 | 1 8 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 11 | 3 9 10 | nfov | ⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) |
| 12 | 11 6 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
| 13 | 7 12 | nfim | ⊢ Ⅎ 𝑥 ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
| 14 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 | |
| 15 | 14 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V |
| 16 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 17 | 1 16 | nfcxfr | ⊢ Ⅎ 𝑦 𝐹 |
| 18 | 4 17 5 | nfov | ⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) |
| 19 | 18 14 | nfeq | ⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
| 20 | 15 19 | nfim | ⊢ Ⅎ 𝑦 ( ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
| 21 | csbeq1a | ⊢ ( 𝑥 = 𝐴 → 𝑅 = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝑅 ∈ V ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 23 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) | |
| 24 | 23 21 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) = 𝑅 ↔ ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |
| 25 | 22 24 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ↔ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) ) |
| 26 | csbeq1a | ⊢ ( 𝑦 = 𝐵 → ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ↔ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 28 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) | |
| 29 | 28 26 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ↔ ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |
| 30 | 27 29 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ↔ ( ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) ) |
| 31 | 1 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) |
| 32 | 31 | 3expia | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ) |
| 33 | 3 4 5 13 20 25 30 32 | vtocl2gaf | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |
| 34 | csbcom | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 | |
| 35 | 34 | eleq1i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ V ↔ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ) |
| 36 | 34 | eqeq2i | ⊢ ( ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ↔ ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
| 37 | 33 35 36 | 3imtr4g | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ) ) |
| 38 | 2 37 | syl5 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ 𝑉 → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ) ) |
| 39 | 38 | 3impia | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ 𝑉 ) → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ) |