This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. A version of ovmpog using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006) (Revised by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ov2gf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| ov2gf.c | ⊢ Ⅎ 𝑦 𝐴 | ||
| ov2gf.d | ⊢ Ⅎ 𝑦 𝐵 | ||
| ov2gf.1 | ⊢ Ⅎ 𝑥 𝐺 | ||
| ov2gf.2 | ⊢ Ⅎ 𝑦 𝑆 | ||
| ov2gf.3 | ⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝐺 ) | ||
| ov2gf.4 | ⊢ ( 𝑦 = 𝐵 → 𝐺 = 𝑆 ) | ||
| ov2gf.5 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | ||
| Assertion | ov2gf | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ov2gf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | ov2gf.c | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | ov2gf.d | ⊢ Ⅎ 𝑦 𝐵 | |
| 4 | ov2gf.1 | ⊢ Ⅎ 𝑥 𝐺 | |
| 5 | ov2gf.2 | ⊢ Ⅎ 𝑦 𝑆 | |
| 6 | ov2gf.3 | ⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝐺 ) | |
| 7 | ov2gf.4 | ⊢ ( 𝑦 = 𝐵 → 𝐺 = 𝑆 ) | |
| 8 | ov2gf.5 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 9 | elex | ⊢ ( 𝑆 ∈ 𝐻 → 𝑆 ∈ V ) | |
| 10 | 4 | nfel1 | ⊢ Ⅎ 𝑥 𝐺 ∈ V |
| 11 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 12 | 8 11 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 13 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 14 | 1 12 13 | nfov | ⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) |
| 15 | 14 4 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) = 𝐺 |
| 16 | 10 15 | nfim | ⊢ Ⅎ 𝑥 ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) |
| 17 | 5 | nfel1 | ⊢ Ⅎ 𝑦 𝑆 ∈ V |
| 18 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 19 | 8 18 | nfcxfr | ⊢ Ⅎ 𝑦 𝐹 |
| 20 | 2 19 3 | nfov | ⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) |
| 21 | 20 5 | nfeq | ⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) = 𝑆 |
| 22 | 17 21 | nfim | ⊢ Ⅎ 𝑦 ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
| 23 | 6 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝑅 ∈ V ↔ 𝐺 ∈ V ) ) |
| 24 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) | |
| 25 | 24 6 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) = 𝑅 ↔ ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ) |
| 26 | 23 25 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ↔ ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ) ) |
| 27 | 7 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( 𝐺 ∈ V ↔ 𝑆 ∈ V ) ) |
| 28 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) | |
| 29 | 28 7 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) = 𝐺 ↔ ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |
| 30 | 27 29 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ↔ ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) ) |
| 31 | 8 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) |
| 32 | 31 | 3expia | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ) |
| 33 | 1 2 3 16 22 26 30 32 | vtocl2gaf | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |
| 34 | 9 33 | syl5 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝑆 ∈ 𝐻 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |
| 35 | 34 | 3impia | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |