This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovmpos.3 | |- F = ( x e. C , y e. D |-> R ) |
|
| Assertion | ovmpos | |- ( ( A e. C /\ B e. D /\ [_ A / x ]_ [_ B / y ]_ R e. V ) -> ( A F B ) = [_ A / x ]_ [_ B / y ]_ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpos.3 | |- F = ( x e. C , y e. D |-> R ) |
|
| 2 | elex | |- ( [_ A / x ]_ [_ B / y ]_ R e. V -> [_ A / x ]_ [_ B / y ]_ R e. _V ) |
|
| 3 | nfcv | |- F/_ x A |
|
| 4 | nfcv | |- F/_ y A |
|
| 5 | nfcv | |- F/_ y B |
|
| 6 | nfcsb1v | |- F/_ x [_ A / x ]_ R |
|
| 7 | 6 | nfel1 | |- F/ x [_ A / x ]_ R e. _V |
| 8 | nfmpo1 | |- F/_ x ( x e. C , y e. D |-> R ) |
|
| 9 | 1 8 | nfcxfr | |- F/_ x F |
| 10 | nfcv | |- F/_ x y |
|
| 11 | 3 9 10 | nfov | |- F/_ x ( A F y ) |
| 12 | 11 6 | nfeq | |- F/ x ( A F y ) = [_ A / x ]_ R |
| 13 | 7 12 | nfim | |- F/ x ( [_ A / x ]_ R e. _V -> ( A F y ) = [_ A / x ]_ R ) |
| 14 | nfcsb1v | |- F/_ y [_ B / y ]_ [_ A / x ]_ R |
|
| 15 | 14 | nfel1 | |- F/ y [_ B / y ]_ [_ A / x ]_ R e. _V |
| 16 | nfmpo2 | |- F/_ y ( x e. C , y e. D |-> R ) |
|
| 17 | 1 16 | nfcxfr | |- F/_ y F |
| 18 | 4 17 5 | nfov | |- F/_ y ( A F B ) |
| 19 | 18 14 | nfeq | |- F/ y ( A F B ) = [_ B / y ]_ [_ A / x ]_ R |
| 20 | 15 19 | nfim | |- F/ y ( [_ B / y ]_ [_ A / x ]_ R e. _V -> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) |
| 21 | csbeq1a | |- ( x = A -> R = [_ A / x ]_ R ) |
|
| 22 | 21 | eleq1d | |- ( x = A -> ( R e. _V <-> [_ A / x ]_ R e. _V ) ) |
| 23 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 24 | 23 21 | eqeq12d | |- ( x = A -> ( ( x F y ) = R <-> ( A F y ) = [_ A / x ]_ R ) ) |
| 25 | 22 24 | imbi12d | |- ( x = A -> ( ( R e. _V -> ( x F y ) = R ) <-> ( [_ A / x ]_ R e. _V -> ( A F y ) = [_ A / x ]_ R ) ) ) |
| 26 | csbeq1a | |- ( y = B -> [_ A / x ]_ R = [_ B / y ]_ [_ A / x ]_ R ) |
|
| 27 | 26 | eleq1d | |- ( y = B -> ( [_ A / x ]_ R e. _V <-> [_ B / y ]_ [_ A / x ]_ R e. _V ) ) |
| 28 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 29 | 28 26 | eqeq12d | |- ( y = B -> ( ( A F y ) = [_ A / x ]_ R <-> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) ) |
| 30 | 27 29 | imbi12d | |- ( y = B -> ( ( [_ A / x ]_ R e. _V -> ( A F y ) = [_ A / x ]_ R ) <-> ( [_ B / y ]_ [_ A / x ]_ R e. _V -> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) ) ) |
| 31 | 1 | ovmpt4g | |- ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x F y ) = R ) |
| 32 | 31 | 3expia | |- ( ( x e. C /\ y e. D ) -> ( R e. _V -> ( x F y ) = R ) ) |
| 33 | 3 4 5 13 20 25 30 32 | vtocl2gaf | |- ( ( A e. C /\ B e. D ) -> ( [_ B / y ]_ [_ A / x ]_ R e. _V -> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) ) |
| 34 | csbcom | |- [_ A / x ]_ [_ B / y ]_ R = [_ B / y ]_ [_ A / x ]_ R |
|
| 35 | 34 | eleq1i | |- ( [_ A / x ]_ [_ B / y ]_ R e. _V <-> [_ B / y ]_ [_ A / x ]_ R e. _V ) |
| 36 | 34 | eqeq2i | |- ( ( A F B ) = [_ A / x ]_ [_ B / y ]_ R <-> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) |
| 37 | 33 35 36 | 3imtr4g | |- ( ( A e. C /\ B e. D ) -> ( [_ A / x ]_ [_ B / y ]_ R e. _V -> ( A F B ) = [_ A / x ]_ [_ B / y ]_ R ) ) |
| 38 | 2 37 | syl5 | |- ( ( A e. C /\ B e. D ) -> ( [_ A / x ]_ [_ B / y ]_ R e. V -> ( A F B ) = [_ A / x ]_ [_ B / y ]_ R ) ) |
| 39 | 38 | 3impia | |- ( ( A e. C /\ B e. D /\ [_ A / x ]_ [_ B / y ]_ R e. V ) -> ( A F B ) = [_ A / x ]_ [_ B / y ]_ R ) |