This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcom | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccom | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐶 ) | |
| 2 | sbcel2 | ⊢ ( [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) | |
| 3 | 2 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| 4 | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 5 | 4 | sbcbii | ⊢ ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐶 ↔ [ 𝐵 / 𝑦 ] 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 6 | 1 3 5 | 3bitr3i | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ [ 𝐵 / 𝑦 ] 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 7 | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) | |
| 8 | sbcel2 | ⊢ ( [ 𝐵 / 𝑦 ] 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 9 | 6 7 8 | 3bitr3i | ⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 10 | 9 | eqriv | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |