This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of osumi , showing it holds under the weaker hypothesis that A and B commute. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | osum.1 | ⊢ 𝐴 ∈ Cℋ | |
| osum.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | osumcor2i | ⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | osum.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | osum.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | cmcm2i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
| 4 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 | 1 4 | cmbr4i | ⊢ ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 7 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 8 | 7 4 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 9 | 1 8 | chincli | ⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 10 | 9 2 | osumi | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) ) |
| 11 | 7 4 | chjcomi | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) |
| 12 | 11 | ineq2i | ⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 | 12 | oveq1i | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) |
| 14 | 4 7 | chjcli | ⊢ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
| 15 | 1 14 | chincli | ⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∈ Cℋ |
| 16 | 15 2 | chjcomi | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 17 | 13 16 | eqtri | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 18 | 2 1 | pjoml4i | ⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐵 ∨ℋ 𝐴 ) |
| 19 | 2 1 | chjcomi | ⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 20 | 18 19 | eqtri | ⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 21 | 17 20 | eqtri | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 22 | 21 | eqeq2i | ⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) ↔ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 23 | inss1 | ⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 | |
| 24 | 9 | chshii | ⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Sℋ |
| 25 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 26 | 2 | chshii | ⊢ 𝐵 ∈ Sℋ |
| 27 | 24 25 26 | shlessi | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 28 | 23 27 | ax-mp | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 29 | sseq1 | ⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 30 | 28 29 | mpbii | ⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 31 | 22 30 | sylbi | ⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 32 | 10 31 | syl | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 33 | 6 32 | sylbi | ⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 34 | 1 2 | chsleji | ⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 35 | 33 34 | jctil | ⊢ ( 𝐴 𝐶ℋ 𝐵 → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 36 | eqss | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 37 | 35 36 | sylibr | ⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |