This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of Kalmbach p. 67. (Contributed by NM, 31-Oct-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | osum | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) ) | |
| 3 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) ) ) |
| 6 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 7 | 6 | sseq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 8 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 9 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 11 | 7 10 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) ) |
| 12 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 13 | ifchhv | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ | |
| 14 | 12 13 | osumi | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 15 | 5 11 14 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |