This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation with orthocomplement. Theorem 2.3(i) of Beran p. 39. (Contributed by NM, 4-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | cmcm2i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | chincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 4 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 | 1 4 | chincli | ⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 6 | 3 5 | chjcomi | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) |
| 7 | 2 | pjococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 |
| 8 | 7 | ineq2i | ⊢ ( 𝐴 ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) |
| 9 | 8 | oveq2i | ⊢ ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) |
| 10 | 6 9 | eqtr4i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 11 | 10 | eqeq2i | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 12 | 1 2 | cmbri | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 13 | 1 4 | cmbri | ⊢ ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ 𝐴 = ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |