This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orthin | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) ) | |
| 2 | incom | ⊢ ( ( ⊥ ‘ 𝐵 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) | |
| 3 | 1 2 | sseqtrdi | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 4 | ocin | ⊢ ( 𝐵 ∈ Sℋ → ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) = 0ℋ ) | |
| 5 | 4 | sseq2d | ⊢ ( 𝐵 ∈ Sℋ → ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐵 ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
| 6 | 3 5 | imbitrid | ⊢ ( 𝐵 ∈ Sℋ → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ) ) |
| 8 | shincl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Sℋ ) | |
| 9 | sh0le | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ Sℋ → 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 11 | 7 10 | jctird | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ∧ 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 12 | eqss | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ ( ( 𝐴 ∩ 𝐵 ) ⊆ 0ℋ ∧ 0ℋ ⊆ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 13 | 11 12 | imbitrrdi | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |