This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shincl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) → ( 𝐴 ∩ 𝐵 ) = ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) → ( ( 𝐴 ∩ 𝐵 ) ∈ Sℋ ↔ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ∈ Sℋ ) ) |
| 3 | ineq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∩ 𝐵 ) = ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∩ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ∈ Sℋ ↔ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∩ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ∈ Sℋ ) ) |
| 5 | helsh | ⊢ ℋ ∈ Sℋ | |
| 6 | 5 | elimel | ⊢ if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∈ Sℋ |
| 7 | 5 | elimel | ⊢ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ∈ Sℋ |
| 8 | 6 7 | shincli | ⊢ ( if ( 𝐴 ∈ Sℋ , 𝐴 , ℋ ) ∩ if ( 𝐵 ∈ Sℋ , 𝐵 , ℋ ) ) ∈ Sℋ |
| 9 | 2 4 8 | dedth2h | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Sℋ ) |