This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orthin | |- ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) = 0H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin | |- ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( ( _|_ ` B ) i^i B ) ) |
|
| 2 | incom | |- ( ( _|_ ` B ) i^i B ) = ( B i^i ( _|_ ` B ) ) |
|
| 3 | 1 2 | sseqtrdi | |- ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) ) |
| 4 | ocin | |- ( B e. SH -> ( B i^i ( _|_ ` B ) ) = 0H ) |
|
| 5 | 4 | sseq2d | |- ( B e. SH -> ( ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) <-> ( A i^i B ) C_ 0H ) ) |
| 6 | 3 5 | imbitrid | |- ( B e. SH -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) ) |
| 7 | 6 | adantl | |- ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) ) |
| 8 | shincl | |- ( ( A e. SH /\ B e. SH ) -> ( A i^i B ) e. SH ) |
|
| 9 | sh0le | |- ( ( A i^i B ) e. SH -> 0H C_ ( A i^i B ) ) |
|
| 10 | 8 9 | syl | |- ( ( A e. SH /\ B e. SH ) -> 0H C_ ( A i^i B ) ) |
| 11 | 7 10 | jctird | |- ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) ) ) |
| 12 | eqss | |- ( ( A i^i B ) = 0H <-> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) ) |
|
| 13 | 11 12 | imbitrrdi | |- ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) = 0H ) ) |