This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orduniss2 | ⊢ ( Ord 𝐴 → ∪ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) } | |
| 2 | incom | ⊢ ( { 𝑥 ∣ 𝑥 ∈ On } ∩ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ∈ On } ) | |
| 3 | inab | ⊢ ( { 𝑥 ∣ 𝑥 ∈ On } ∩ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ) = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) } | |
| 4 | df-pw | ⊢ 𝒫 𝐴 = { 𝑥 ∣ 𝑥 ⊆ 𝐴 } | |
| 5 | 4 | eqcomi | ⊢ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } = 𝒫 𝐴 |
| 6 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ On } = On | |
| 7 | 5 6 | ineq12i | ⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ∈ On } ) = ( 𝒫 𝐴 ∩ On ) |
| 8 | 2 3 7 | 3eqtr3i | ⊢ { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) } = ( 𝒫 𝐴 ∩ On ) |
| 9 | 1 8 | eqtri | ⊢ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = ( 𝒫 𝐴 ∩ On ) |
| 10 | ordpwsuc | ⊢ ( Ord 𝐴 → ( 𝒫 𝐴 ∩ On ) = suc 𝐴 ) | |
| 11 | 9 10 | eqtrid | ⊢ ( Ord 𝐴 → { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = suc 𝐴 ) |
| 12 | 11 | unieqd | ⊢ ( Ord 𝐴 → ∪ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = ∪ suc 𝐴 ) |
| 13 | ordunisuc | ⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) | |
| 14 | 12 13 | eqtrd | ⊢ ( Ord 𝐴 → ∪ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |