This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orduniss2 | |- ( Ord A -> U. { x e. On | x C_ A } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. On | x C_ A } = { x | ( x e. On /\ x C_ A ) } |
|
| 2 | incom | |- ( { x | x e. On } i^i { x | x C_ A } ) = ( { x | x C_ A } i^i { x | x e. On } ) |
|
| 3 | inab | |- ( { x | x e. On } i^i { x | x C_ A } ) = { x | ( x e. On /\ x C_ A ) } |
|
| 4 | df-pw | |- ~P A = { x | x C_ A } |
|
| 5 | 4 | eqcomi | |- { x | x C_ A } = ~P A |
| 6 | abid2 | |- { x | x e. On } = On |
|
| 7 | 5 6 | ineq12i | |- ( { x | x C_ A } i^i { x | x e. On } ) = ( ~P A i^i On ) |
| 8 | 2 3 7 | 3eqtr3i | |- { x | ( x e. On /\ x C_ A ) } = ( ~P A i^i On ) |
| 9 | 1 8 | eqtri | |- { x e. On | x C_ A } = ( ~P A i^i On ) |
| 10 | ordpwsuc | |- ( Ord A -> ( ~P A i^i On ) = suc A ) |
|
| 11 | 9 10 | eqtrid | |- ( Ord A -> { x e. On | x C_ A } = suc A ) |
| 12 | 11 | unieqd | |- ( Ord A -> U. { x e. On | x C_ A } = U. suc A ) |
| 13 | ordunisuc | |- ( Ord A -> U. suc A = A ) |
|
| 14 | 12 13 | eqtrd | |- ( Ord A -> U. { x e. On | x C_ A } = A ) |