This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordpwsuc | ⊢ ( Ord 𝐴 → ( 𝒫 𝐴 ∩ On ) = suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ On ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On ) ) | |
| 2 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 3 | 2 | anbi2ci | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) ) |
| 4 | 1 3 | bitri | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ On ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) ) |
| 5 | ordsssuc | ⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐴 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) | |
| 6 | 5 | expcom | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ On → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) ) |
| 7 | 6 | pm5.32d | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴 ) ) ) |
| 8 | simpr | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴 ) → 𝑥 ∈ suc 𝐴 ) | |
| 9 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 10 | ordelon | ⊢ ( ( Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴 ) → 𝑥 ∈ On ) | |
| 11 | 10 | ex | ⊢ ( Ord suc 𝐴 → ( 𝑥 ∈ suc 𝐴 → 𝑥 ∈ On ) ) |
| 12 | 9 11 | sylbi | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ suc 𝐴 → 𝑥 ∈ On ) ) |
| 13 | 12 | ancrd | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ suc 𝐴 → ( 𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴 ) ) ) |
| 14 | 8 13 | impbid2 | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴 ) ↔ 𝑥 ∈ suc 𝐴 ) ) |
| 15 | 7 14 | bitrd | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) ↔ 𝑥 ∈ suc 𝐴 ) ) |
| 16 | 4 15 | bitrid | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ On ) ↔ 𝑥 ∈ suc 𝐴 ) ) |
| 17 | 16 | eqrdv | ⊢ ( Ord 𝐴 → ( 𝒫 𝐴 ∩ On ) = suc 𝐴 ) |